SVM-Based Feature Selection for Characterization of Focused Compound Collections
نویسندگان
چکیده
منابع مشابه
SVM-Based Feature Selection for Characterization of Focused Compound Collections
Artificial neural networks, the support vector machine (SVM), and other machine learning methods for the classification of molecules are often considered as a "black box", since the molecular features that are most relevant for a given classifier are usually not presented in a human-interpretable form. We report on an SVM-based algorithm for the selection of relevant molecular features from a t...
متن کاملFeature Subset Selection for Multi-class SVM Based Image Classification
Multi-class image classification can benefit much from feature subset selection. This paper extends an error bound of binary SVMs to a feature subset selection criterion for the multi-class SVMs. By minimizing this criterion, the scale factors assigned to each feature in a kernel function are optimized to identify the important features. This minimization problem can be efficiently solved by gr...
متن کاملNeighborhood based sample and feature selection for SVM classification learning
Support vector machines (SVMs) are a class of popular classification algorithms for their high generalization ability. However, it is time-consuming to train SVMs with a large set of learning samples. Improving learning efficiency is one of most important research tasks on SVMs. It is known that although there are many candidate training samples in some learning tasks, only the samples near pla...
متن کاملFeature Selection for SVM-Based Vascular Anomaly Detection
This work explores feature selection to improve the performance in the vascular anomaly detection domain. Starting from a previously defined classification framework based on Support Vector Machines (SVM), we attempt to determine features that improve classification performance and to define guidelines for feature selection. Three different strategies were used in the feature selection stage, w...
متن کاملFeature Selection By KDDA For SVM-Based MultiView Face Recognition
Applications such as Face Recognition (FR) that deal with high-dimensional data need a mapping technique that introduces representation of low-dimensional features with enhanced discriminatory power and a proper classifier, able to classify those complex features .Most of traditional Linear Discriminant Analysis (LDA) suffer from the disadvantage that their optimality criteria are not directly ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Chemical Information and Computer Sciences
سال: 2004
ISSN: 0095-2338
DOI: 10.1021/ci0342876